RENEWABLE HYDROGEN PATHWAY CaH²Net Hydrogen Workshop Jon Slangerup, CEO **Solar Integrated Technologies** ## **Hydrogen 101** - Hydrogen (H²) is the most abundant element in the Universe - H² has been proven safe and reliable as an energy carrier and fuel source - Commercial market for industrial H² exceeds \$50B annually - >60% used in oil refining - >30% used in industrial manufacturing - <10% used in emerging applications, e.g. transportation and power - H² technology is mature, affordable, adaptable and scaleable - H² is primarily produced from either fossil fuel reformation or water electrolysis # H² Production: Two Options - H² production today is based primarily on fossil fuel reformation - Steam Methane Reforming (SMR) using natural gas (NG) is most common - SMR is least expensive H² production process - SMR generates significant amounts of green house gas emissions - Water electrolysis is the growing alternative H² production process - H² produced from water and electricity - Cost of electrolytic H² is directly proportional to cost of electricity - Electrolytic H² is emission-free when produced from renewable electricity - Renewable H² (RH²) is only long-term path to mitigating energy security and air quality risks ### H² Economics - H² versus gasoline - One kilogram (kg) of H² is the energy equivalent of about 1 gallon of gas - One kg of H² sells for \$5 to \$75 based upon volume sold and production method - H², when used in either an engine or fuel cell, is 30-60% more efficient than gas - SMR-produced H² sells for \$5 to >\$75 per kg - Economics based on costs of physical distribution and large volume production; e.g. the larger the delivered order the lower the cost - Electrolytic H² sells for \$7 to \$15 per kg - Economics based on size of on-site production facility and cost of electricity - 1 kg of H² consumes 55-60 kilowatt hours (kWh) of electricity, e.g. each penny per kWh equals 55-60 cents per kg of H² (\$.10/kWh = \$5.50 H²/kg) # Is Renewable H² A Viable Option? - Yes, long-term - RH² is the only long-term pathway to clean and secure energy - Rising cost of oil is driving factor based on declining reserves and political risks - Deteriorating air quality and climate change are sustaining factors due to human health and welfare impacts - Short-term needs - Increased incentives for RH² production and product development - Public awareness and continued political leadership SB1 and CaH2Net are solid steps forward - Equivalent of Apollo Project to prepare infrastructure now to ensure widespread adoption of H² vehicle and power products after 2010 ## **Opportunities & Constraints** - RH² is technically viable but dependent upon subsidy in the shortterm until scale and mass adoption are achieved - H² storage technology and harmonized codes and standards are biggest hurdles facing near-term H2 adoption - Wind power initiatives are losing momentum due to subsidy and capital constraints – industry needs to be revitalized - Solar initiatives are gaining momentum due to increasing incentives and available capital - Solar is ideal companion for RH² applications based on distributed power attributes of on-site generation of electricity and H² - Industry photovoltaic supply shortfall is driving significant capitalization - Billions of square miles of flat industrial roofs are beginning to be targeted in next wave of solar capacity expansion ## **Summary** - H² is a mature and vital industry using proven, adaptable technology - Oil is a declining resource, while renewable energy is an abundant and sustainable resource dependent short-term on subsidies - RH² is the only long-term path to mitigating energy security and air quality risks on a global scale